Elasticsearch是一个分布式搜索服务,提供Restful API,底层基于Lucene,采用多shard(分片)的方式保证数据安全,并且提供自动resharding的功能,github等大型的站点也是采用了ElasticSearch作为其搜索服务,
dokcer pull elasticsearch
docker run -e ES_JAVA_OPTS="-Xms256m -Xmx256m" -d -p 9200:9200 -p 9300:9300 --name 容器名称 镜像id
-e设置了内存大小,防止测试环境内存不够导致启动失败,9200是默认端口
-e "discovery.type=single-node"
单节点部署
Elasticsearch: 权威指南
https://www.elastic.co/guide/cn/elasticsearch/guide/2.x/index-doc.html
存储数据到 Elasticsearch 的行为叫做 索引
一个 Elasticsearch 集群可以 包含多个 索引 ,相应的每个索引可以包含多个 类型 。 这些不同的类型存储着多个 文档 ,每个文档又有 多个 属性 。
对于员工目录,我们将做如下操作:
employee
类型 。megacorp
内。PUT /megacorp/employee/1
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
注意,路径 /megacorp/employee/1
包含了三部分的信息:
megacorp
索引名称employee
类型名称1
特定雇员的ID
请求体 —— JSON 文档 —— 包含了这位员工的所有详细信息,他的名字叫 John Smith ,今年 25 岁,喜欢攀岩。
GET
请求并指定文档的地址——索引库、类型和ID。 使用这三个信息可以返回原始的 JSON 文档:GET /megacorp/employee/1
返回结果包含了文档的一些元数据,以及 _source
属性,内容是 John Smith 雇员的原始 JSON 文档:
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
将 HTTP 命令由 PUT
改为 GET
可以用来检索文档,同样的,可以使用 DELETE
命令来删除文档,以及使用 HEAD
指令来检查文档是否存在。如果想更新已存在的文档,只需再次 PUT
。
GET
是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:
GET /megacorp/employee/_search
可以看到,我们仍然使用索引库 megacorp
以及类型 employee
,但与指定一个文档 ID 不同,这次使用 _search
。返回结果包括了所有三个文档,放在数组 hits
中。一个搜索默认返回十条结果。
{
"took": 6,
"timed_out": false,
"_shards": { ... },
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
注意:返回结果不仅告知匹配了哪些文档,还包含了整个文档本身:显示搜索结果给最终用户所需的全部信息。
接下来,尝试下搜索姓氏为 Smith
的雇员。为此,我们将使用一个 高亮 搜索,很容易通过命令行完成。这个方法一般涉及到一个 查询字符串 (query-string) 搜索,因为我们通过一个URL参数来传递查询信息给搜索接口:
GET /megacorp/employee/_search?q=last_name:Smith
我们仍然在请求路径中使用 _search
端点,并将查询本身赋值给参数 q=
。返回结果给出了所有的 Smith:
{
...
"hits": {
"total": 2,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
Query-string 搜索通过命令非常方便地进行临时性的即席搜索 ,但它有自身的局限性(参见 轻量 搜索 )。Elasticsearch 提供一个丰富灵活的查询语言叫做 查询表达式 , 它支持构建更加复杂和健壮的查询。
领域特定语言 (DSL), 使用 JSON 构造了一个请求。我们可以像这样重写之前的查询所有名为 Smith 的搜索 :
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}
返回结果与之前的查询一样,但还是可以看到有一些变化。其中之一是,不再使用 query-string 参数,而是一个请求体替代。这个请求使用 JSON 构造,并使用了一个 match
查询(属于查询类型之一,后面将继续介绍)。
现在尝试下更复杂的搜索。 同样搜索姓氏为 Smith 的员工,但这次我们只需要年龄大于 30 的。查询需要稍作调整,使用过滤器 filter ,它支持高效地执行一个结构化查询。
GET /megacorp/employee/_search
{
"query" : {
"bool": {
"must": {
"match" : {
"last_name" : "smith"
}
},
"filter": {
"range" : {
"age" : { "gt" : 30 }
}
}
}
}
}
match
查询 一样。range
过滤器 , 它能找到年龄大于 30 的文档,其中 gt
表示_大于_(great than)。目前无需太多担心语法问题,后续会更详细地介绍。只需明确我们添加了一个 过滤器 用于执行一个范围查询,并复用之前的 match
查询。现在结果只返回了一名员工,叫 Jane Smith,32 岁。
{
...
"hits": {
"total": 1,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
截止目前的搜索相对都很简单:单个姓名,通过年龄过滤。现在尝试下稍微高级点儿的全文搜索——一项 传统数据库确实很难搞定的任务。
搜索下所有喜欢攀岩(rock climbing)的员工:
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}
显然我们依旧使用之前的 match
查询在about
属性上搜索 “rock climbing” 。得到两个匹配的文档:
{
...
"hits": {
"total": 2,
"max_score": 0.16273327,
"hits": [
{
...
"_score": 0.16273327,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_score": 0.016878016,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
Elasticsearch 默认按照相关性得分排序,即每个文档跟查询的匹配程度。第一个最高得分的结果很明显:John Smith 的 about
属性清楚地写着 “rock climbing” 。
但为什么 Jane Smith 也作为结果返回了呢?原因是她的 about
属性里提到了 “rock” 。因为只有 “rock” 而没有 “climbing” ,所以她的相关性得分低于 John 的。
这是一个很好的案例,阐明了 Elasticsearch 如何 在 全文属性上搜索并返回相关性最强的结果。Elasticsearch中的 相关性 概念非常重要,也是完全区别于传统关系型数据库的一个概念,数据库中的一条记录要么匹配要么不匹配。
找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者_短语_ 。 比如, 我们想执行这样一个查询,仅匹配同时包含 “rock” 和 “climbing” ,并且 二者以短语 “rock climbing” 的形式紧挨着的雇员记录。
为此对 match
查询稍作调整,使用一个叫做 match_phrase
的查询:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
毫无悬念,返回结果仅有 John Smith 的文档。
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
]
}
}
许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。
再次执行前面的查询,并增加一个新的 highlight
参数:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
当执行该查询时,返回结果与之前一样,与此同时结果中还多了一个叫做 highlight
的部分。这个部分包含了 about
属性匹配的文本片段,并以 HTML 标签 <em></em>
封装:
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
},
"highlight": {
"about": [
"I love to go <em>rock</em> <em>climbing</em>"
]
}
}
]
}
}
关于高亮搜索片段,可以在 highlighting reference documentation 了解更多信息。
SpringBoot默认支持两种技术来和ES交互
默认不生效,需要导入Jest的工具包 - io.searchbox.client.JestClient
<!-- https://mvnrepository.com/artifact/io.searchbox/jest -->
<dependency>
<groupId>io.searchbox</groupId>
<artifactId>jest</artifactId>
<version>5.3.3</version>
</dependency>
@Autowired
JestClient jestClient;
@Test
public void contextLoads() {
//1、给Es中索引(保存)一个文档;
Article article = new Article();
article.setId(1);
article.setTitle("好消息");
article.setAuthor("zhangsan");
article.setContent("Hello World");
//构建一个索引功能
Index index = new Index.Builder(article).index("wu").type("news").build();
try {
//执行
jestClient.execute(index);
} catch (IOException e) {
e.printStackTrace();
}
}
//测试搜索
@Test
public void search(){
//查询表达式
String json ="{\n" +
" \"query\" : {\n" +
" \"match\" : {\n" +
" \"content\" : \"hello\"\n" +
" }\n" +
" }\n" +
"}";
//更多操作:https://github.com/searchbox-io/Jest/tree/master/jest
//构建搜索功能
Search search = new Search.Builder(json).addIndex("wu").addType("news").build();
//执行
try {
SearchResult result = jestClient.execute(search);
System.out.println(result.getJsonString());
} catch (IOException e) {
e.printStackTrace();
}
}
版本适配说明
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
(1)Client - 节点信息:clusterNodes,clusterName
(2)ElasticsearchTemplate操作ES
(3)编写一个ElasticsearchRepository的子接口来操作ES
https://docs.spring.io/spring-data/elasticsearch/docs/3.2.12.RELEASE/reference/html/#reference
@Autowired
BookRepository bookRepository;
@Test
public void testJest() throws IOException {
Book book = new Book();
book.setAuthor("wuruohui");
book.setBookName("hei");
book.setId(1);
bookRepository.save(book);
}
/wu/_doc/1
-- 新版本弃用了type属性